
Attestation (RATS/EAT)
Overview

Laurence Lundblade

February 2020

2

B
a

d
 D

e
v
ic

e
s

Banking risk engine IoT backend

Network infrastructure

Enterprise auth risk engine Electric company

Car components

G
o

o
d

 D
e

v
ic

e
s

Entity

Attestation

Token

• Chip & device
manufacturer

• Device ID (e.g. serial
number)

• Boot state, debug
state…

• Firmware, OS & app
names and versions

• Geographic location

• Measurement, rooting
& malware detection…

All Are Optional

Cryptographically
secured by signing

3

EAT Initial Set of Claims

Claim Description

UEID Identify a particular individual device, similar to a serial number

OEM ID Identify the manufacturer of the device

Boot and debug state Is secure/trusted/authenticated boot turned on? Is debug disabled?

Geographic location GPS coordinates, speed, altitude

Security level Rich OS, TEE, secure element…

Nonce Token freshness

Origination Identifies authority that can verify the token

Time stamp Time and / or age of the token

Submodules How to deal with claims from different subcomponents of a module. For example,

the TEE and Rich OS are separate submodules.

Nested tokens Putting one EAT inside another as a way of handling subcomponents

Intended only as initial set. Expansion should include SW components, measurement, public keys (similar to
Android attestation) and other.

4

EAT Overall System Entity Manufacturer

(e.g. chip or device vendor)

Entity (e.g., Chip, Device…)

Relying Party (e.g., Server / Service)
EAT Token

Key ID or Cert

• Nonce

• Claim 1

• Claim 2

• …

Signature

Signature and

public key

verification

process

Device status &

characteristics

determination

Claims

Immutable private key
for signing. Stored
securely on device

Token creation

& signing

Claims

Manufacturing process to put

seed, private and/or public key,

cert or other on device (this is

intentionally open-ended)

Nonce

Interaction to obtain public

key and related data for

token verification.

EAT Target for standardization

5

Target

Part of device
that attestation
claims are about

Device / Entity
wants to enroll, authenticate, transact, access…

Attestation Evidence

claim: nonce

claim: OEM ID

claim: GPS

…

signature

Endorsement

Verification key

Attester

Signing key

key gen

Attestation Result

claim: OK

claim: nonce

claim: OEM ID

claim: GPS

…

Decides whether to
enroll, authenticate,
transact, allow
access…

Relying Party

Verifier

verify

check

nonce

Attestation

Architecture

claim

claim

…

Signing key

sign

Manufacturer
Makes device, provisions keys, runs verification service

collect

Relying Party

Policy, known good

values…

Endorsement

6

Target

Device / Entity
wants to enroll, authenticate, transact, access…

Attestation Evidence

claim: nonce

claim: OEM ID

claim: GPS

…

signature

Endorsement

Verification key

Attester

Signing key

key gen

Attestation Result

claim: OK

claim: nonce

claim: OEM ID

claim: GPS

…

Decides whether to
enroll, authenticate,
transact, allow
access…

Relying Party

Verifier

verify

check

nonce

Another

Attestation

Architecture

(more are possible)

claim

claim

…

Signing key

sign

Manufacturer
Makes device, provisions keys, runs verification service

Part of device
that attestation
claims are about

collect

Relying Party

Policy, known good

values…

Endorsement

7

• Main types of claims to standardize:

◦ Device Identity

◦ Measurement

◦ Device boot, debug and configuration state

◦ Measurement and run time integrity checks

◦ Geographic location

◦ Device SW and HW versions

◦ Public key created on the device – Keystore, IoT and FIDO use cases

• Claims should be generally applicable:

◦ Not specific to TPM, TrustZone, SGX, Secure Element…

◦ Not require any particular level of device security
• Works with high-security device like Secure Elements and TPMs and low-security devices with nothing

special at all.

Primary Standardization Goal is Semantic Interoperability of Claims

8

EAT Format (basically CWT)
draft-mandyam-eat-00

Overall structure: COSE_Sign1

Key ID -- identifies the key needed to verify signature

Certs (optional) -- to chain up to a root for some signing schemes

signature -- Examples: 64-byte ECDSA signature, 256-byte RSA signature

• CBOR formatted map of claims that describe device and its disposition

• Few and simple or many, complex, nested…

• All claims are optional -- no minimal set

• The format and meaning of a basic set of claims should be standardized
for interoperability

• Should be adaptable to cover many different use cases from tiny IoT
devices to complex mobile phones

• Privacy issues must be taken into account

Algorithm -- Examples: ECDSA 256, RSA 2048, ECDAA

Signing Scheme -- Examples: IEEE IDevID, EPID, X.509 Hierarchy

S
ig

n
e

d
 p

a
y
lo

a
d

s
ig

p
ro

te
c

te
d

h
e

a
d

e
rs

u
n

p
ro

te
c

te
d

h
e

a
d

e
rs

• Signature proves device and claims

(critical)

• Accommodate different end-end signing

schemes because of device

manufacturing issues

• Privacy requirements also drive variance

in signing schemes

• COSE format for signing

• Small message size for IoT

• Allows for varying signing algorithms,

carries headers, sets overall format

• CBOR format for claims

• Small message size for IoT

• Labelling of claims

• Very flexible data types for all kinds of

different claims.

• Translates to JSON

9

[

/ protected / << {

/ alg / 1: -7 / ECDSA 256 /

} >>,

/ unprotected / {

/ kid / 4: h'4173796d6d65747269634543445341323536’

},

/ payload / << {

/ UEID / 8: h'5427c1ff28d23fbad1f29c4c7c6a55’,

/ secure boot enabled / 13: true

/ debug disabled / 15: true

/ integrity / -81000: {

/ status / -81001: true

/ timestamp / 21: 1444064944,

},

/ location / 18: {

/ lat / 19: 32.9024843386,

/ long / 20: -117.192956976

},

} >>,

/ signature / h'5427c1ff28d23fbad1f29c4c7c6a555e601d6fa29f9179bc3d7438bacaca5acd08c8

d4d4f96131680c429a01f85951ecee743a52b9b63632c57209120e1c9e30'

]

Example Token

Payload Translated to JSON

- Integer labels mapped to strings

- Binary data base 64 encoded

- Floating point numbers turned into strings

{

“UEID” : “k8if9d98Mk979077L38Uw34kKFRHJgd18f==”,

“secureBoot” : true,

“debugDisable” : true,

“integrity”: {

“status”: true,

“timestamp”: “2015-10-5T05:09:04Z”,

},

“location”: {

“lat”: “32.9024843386”,

“long”: “-117.192956976”,

},

}

CBOR diagnostic representation of

binary data of full signed token

COSE binary ~130

bytes including sig

JSON text ~500

bytes including a

JOSE sig

COSE ECDSA signing overhead is

about 87 bytes: 23 for headers and

structure, 64 bytes for ECDSA sig

10

• Many standard algorithms already supported
◦ RSA, ECDSA and Edwards-Curve Signing (public key)

◦ HMAC and AES-based MACs (symmetric key)

• Extensible for future algorithms
◦ IANA registry for algorithms exists today

• Extensible for special case schemes
◦ Proprietary simple HMACs schemes, perhaps HW based

◦ Possibly Intel EPID

◦ (non-standard algorithms will of course be less interoperable)

COSE Signing Scheme Flexibility

https://www.iana.org/assignments/cose/cose.xhtml

11

• Entity Attestation Tokens are intended for many use cases with varying privacy requirements
◦ Some will be simple with only 2 or 3 claims, others may have 100 claims

◦ Simple, single-use IoT devices, have fewer privacy issues and may be able to include claims that

complex devices like Android phones cannot

• Options for handling privacy
◦ Omit privacy-violating claims

◦ Redesign claims especially to work with privacy regulation

◦ Obtain user permission to include claims that would otherwise be privacy-violating

• Some signing schemes will be privacy-preserving (e.g. group key, ECDAA) and some will

not

Privacy

12

Detailed Claims
Description

13

A unique string from the relying party

Included in token to prevent replay attacks

Nonce
Basic Claim

14

Identify an individual manufactured entity, device, chip, box…

• Like a serial number, but not necessarily sequential

• NOT a model number, device type or class of device

• Universally and globally unique across all devices from all manufacturers without any qualifier.

• Permanent, not reprogrammable

• Not intended for direct use by humans

Several types of binary byte strings defined:

• Type 1 – 128 to 256-bit random number (e.g., a GUID)

• Type 2 – IEEE EUI (similar to or same as MAC addresses registered by company by IEEE)

• Type 3 – IMEI (typical mobile phone serial number)

• Types 4,5,6 – IEEE EUI-48, 60 and 64

The relying party, receiver or consumer, MUST treat this as a completely opaque identifier

Universal Entity ID (UEID)
Basic Claim defined in EAT draft

15

This identifies the manufacturer of the entity

• IEEE OUIs are used here since IEEE provides a global unique registry of companies

• This is commonly the first part of a MAC address

• Perhaps a GUID can also be used to avoid IEEE fees and entanglements

Identifies a device of a certain brand, a chip from a particular manufacturer, etc.

By using submodules (defined later), a single token can identify the OEM of the chip(s),

module(s) and final consumer product.

OEM ID
Basic Claim defined in EAT draft

16

Allow relying party to understand if the device is fully secured and under control of the OEM

Secure Boot Enabled Boolean

• Indicates only SW authorized by the OEM is running

Debug Enablement Status

• Mostly relates to HW-based debug facilities including RMA diagnostics

Boot and Debug State
Basic Claim defined in EAT draft

debugDisabled Debug is currently disabled, but may have been previously

enabled

debugDisabledSinceBoot Debug has not been enabled in this boot cycle, but may have

been enabled in previous boot cycles

debugPermanentDisable Debug can only be enabled by the OEM

debugFullPermanentDisable It is not possible to enable debug

17

Token Time Stamps
Basic Claim defined in EAT draft

Time stamp Epoch-based time indicating when the token was created.

Optional (as all claims are) since some entities do not have a clock

Age Number of seconds since token or data was generated

Useful only if token data is cached or pre-generated some time before token is sent

Uptime Number of seconds since the device booted

18

Geographic Location -- WGS84 Coordinate System
Basic Claim defined in EAT draft

Latitude

Longitude

Altitude

Accuracy Accuracy of latitude and longitude in meters

Altitude accuracy Accuracy of altitude in meters

Heading 0 to 360

Speed Meters/second

All claims are optional

All can be either integer or float

19

Security Level
Basic Claim defined in EAT draft

Unrestricted The implementor has made some attempt to protect the attestation key

Example: Linux, Windows, MacOS kernel or system process

Restricted Uses a subsystem, but not one that is security-oriented.

Example: Wi-Fi subsystem, IoT device

Secure restricted Uses a security-oriented restricted operating environment

Defend against large-scale network based attacks

Examples: TEE, Virtualization Based Security, Intel SGX

Hardware Defends against physical or electrical attacks

Examples: secure elements, smartcards, TPMs

Rough characterization of the overall security of the entity implementation

Primarily characterizes the protection of the attestation signing key

Only rough characterization is possible as this can be very subjective. The relying party must be

aware of this and may want to rely other claims instead.

20

Identifies the part of a device originating the token

May tie back to manufacturer and/or URL for verification of the token

(This needs refinement)

Origination
Basic Claim defined in EAT draft

21

International Article Number, IAN-13, a 13-digit number

Superset of 12-digit UPC (standard barcode)

Used by some chip vendors to version IC layout sent to the fab

General broad product identification use

HW Version
Basic Claim defined in PSA draft

22

A large random number regenerated every time the entity boot cycles

Allows relying party to tell if the device has rebooted since the last token was received

Boot Seed
Basic Claim defined in PSA draft

23

URI / string identifier of profile document describing the token and use case in more detail

May include:

• Standardized claims allowed or used for this profile

◦ Restrictions on these standard claims

• Definitions of new / custom (not standard) claims

• Claims that are mandatory / optional

• Submodule structure for profile

• Signing scheme

Profile Definition
Basic Claim defined in PSA draft

24

The following claims areas were not discussed in this presentation:

• SW Components

• Measurement and Integrity Checking

• Public keys and their characteristics (e.g. Android Keystore)

• Submodules and Nesting

The Other More Complex Claims

25

QCBOR, t_cose, ctoken
SW Stack

QCBOR Encoder
QCBOR Decoder

t_cose verifyt_cose signing

UsefulBuf

m
b

ed
 C

ryp
to

 2
.0

UsefulBuf

m
b

e
d

 C
ryp

to
 1

.1

O
p

en
SSL

ctoken_decodectoken_encode

eat_d
e

co
d

e

p
saia_d

eco
d

e

cw
t_d

eco
d

e

eat_en
co

d
e

p
saia_e

n
co

d
e

cw
t_en

co
d

e

150

950

1800
2500

4000

100

1000 2000

(choose one)

• Encode and decode are largely
separate except for crypto

• Sizes are for 64-bit x86 and very
approximate

• Sizes vary by compiler
• Sizes vary, particularly for encoding

side, depending on the data types
of the claims

Cake Diagram for ctoken / t_cose / QCBOR

QCBOR Encoder
QCBOR Decoder

t_cose verifyt_cose signing

UsefulBuf
m

b
e

d
 C

ryp
to

 2
.0

UsefulBuf
m

b
e

d
 C

ryp
to

 1
.1

O
p

en
SSL

Test code for initial attestationPSA Initial Attestation

150

950

1800
2500

4000

100

(choose one)

Cake Diagram for PSA initial attestation / t_cose / QCBOR

QCBOR

• Full CBOR encoder / decoder written at Qualcomm and open-sourced
• Now maintained by Laurence

• Easy to port in new environments
• Dependencies: <stdint.h>, <stddef.h>, <stdbool.h> and <string.h>

• No malloc. Caller fully controls memory management

• Comprehensive automated test suite

• Secure coding style to avoid buffer overruns and vulnerabilities

• Stable for over a year, integrated with ARM TF-M

t_cose
• COSE implementation of signing and verification targeted at embedded CWT & EAT

• No encryption support, at least not for a while

• Dependencies:
• <stdint.h>, <stddef.h>, <stdbool.h> and <string.h>
• QCBOR
• A crypto library for SHA hashes and ECDSA

• OpenSSL (uses malloc)
• PSA Crypto (either 1.1 or 2.0)
• Future libraries via adaptor layer

• No malloc. Caller fully controls memory management

• Only one copy of the payload / token needed in memory to sign or verify

• Comprehensive test coverage

• Largely stable, integrated with ARM TF-M

ctoken

• Implements EAT, CWT and PSA Attestation
• Flexible to add claims, combine claims from different standards

• Only encoding / decoding of claims since claim values come from the OS or other

• Dependencies: t_cose and its dependencies

• No malloc. Caller fully controls memory management

• Only one copy of the payload / token needed in memory to sign or verify

• Derived and generalized from ARM PSA Attestation
• The TF-M attestation API is different, higher level and include all claim generation

Key Setup

32

ECDSA key setup based on 256-bit secret seed

Device Maker

Device

Device Management System
Token

• Key ID

• Nonce

• Claims

• Signature

Signature and

public key

verification

process

Claims

Deterministic ECDSA key gen
Make key ID

Token creation

& signing
Claims

256-bit secret key seed

Nonce

Obtain public key for

signature verification

based on key ID

Deterministic ECDSA key gen

Database of
IoT devices

Database of
secret key seeds

Transfer needs secrecy

33

ECDSA key setup generating key on device

Device Maker

Device

Device Management System
Token

• Key ID

• Nonce

• Claims

• Signature

Signature and

public key

verification

process

Claims

Key generation on device during
manufacture. Makes key ID too.

Token creation

& signing
Claims

Public key and

key ID

Nonce

Obtain public key for

signature verification

based on key ID

Database of
IoT devices

Database of
public keys

No secrecy needed,
but device must be
smart and factory
security is still
needed

34

ECDSA key setup generating key outside of device

Device Maker

Device

Device Management System
Token

• Key ID

• Nonce

• Claims

• Signature

Signature and

public key

verification

process

Claims

Store private key and key ID.

Token creation

& signing
Claims

Private key

and key ID

Nonce

Obtain public key for

signature verification

based on key ID

Database of
IoT devices

Database of
public keys

Key generation off device (in
batches)

Transfer needs secrecy

