orm

+ + + +

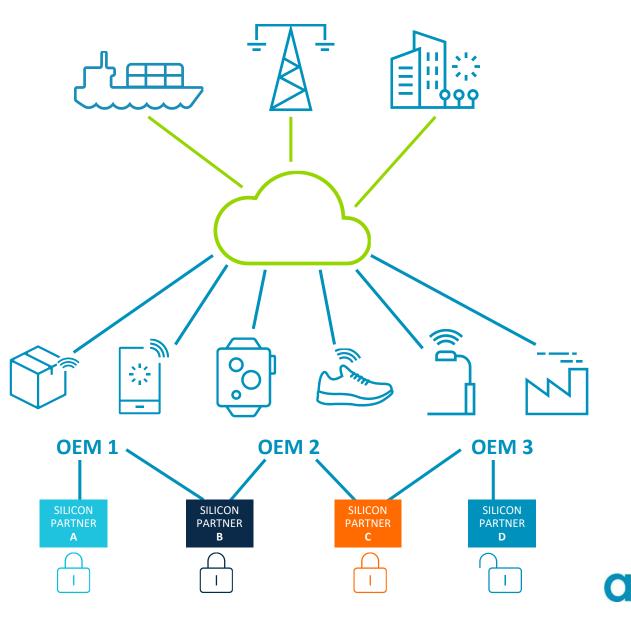
+ + + +

PSA & Attestation

+ + + + + +

Yogesh Deshpande, Abeezar Burhan, Thomas Fossati Feb'20

Agenda

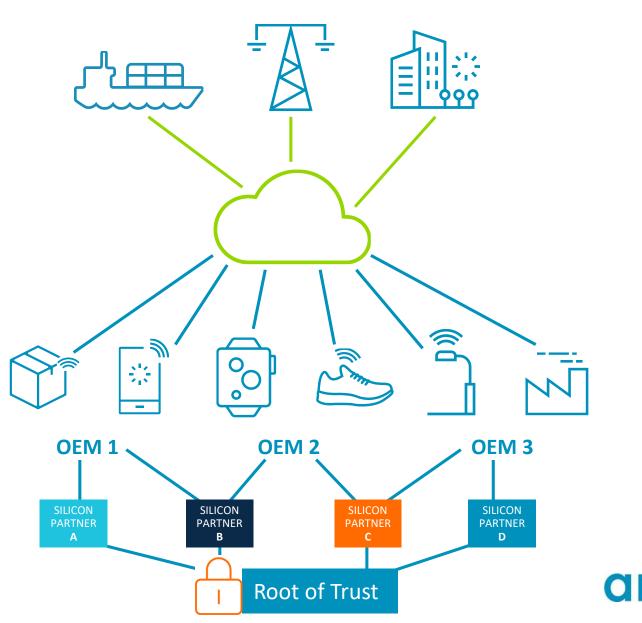

- IoT Security Challenges
- PSA building trust in IoT
- PSA Attestation
- Practical use cases of attestation
- arm view of reference IoT implementation

IoT Diversity Demands a Different Approach

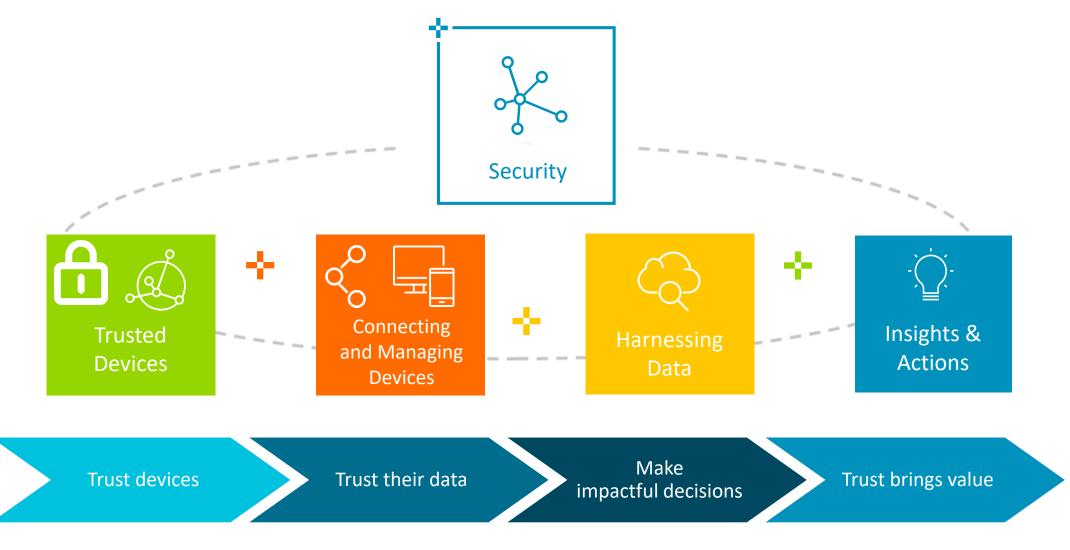
Many cloud services needing to trust the data & therefore trust the devices

10,000's OEMs

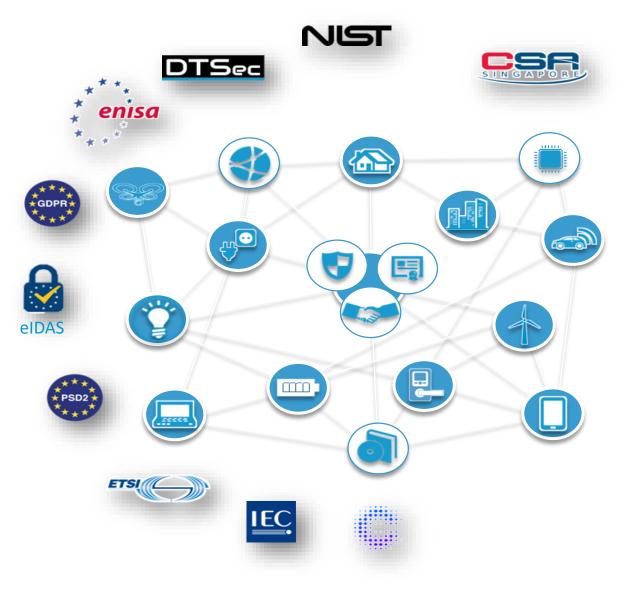
100's of chip vendors with different RoT



IoT Diversity Demands a Different Approach

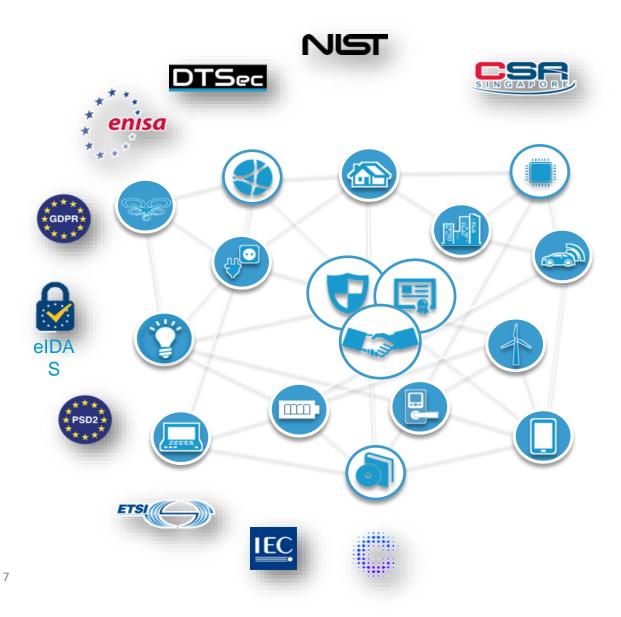

Many cloud services needing to trust the data & therefore trust the devices

10,000's OEMs


100's of chip vendors with different RoT

Trust is Essential for Digital Transformation

IoT Developers Face Challenges Such As


Differentiate by means of proven security functionality showing **accountability**

Protect themselves from **liability** claims and recalls

Meet private and public compliance requirements as precondition for access to market

Typical Challenges of the IoT Industry

IoT developers are **experts on services and product** execution, not on security.

Hardware and software providers need to differentiate gaining visibility and recognition in the IoT ecosystem.

Lack of IoT product security comes at a price: hundreds of norms and regulations introduced around the world + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + +

+ + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + Building Trust in IoT +

* * * * * * * * * * * * * * * * *

+ + + + + + + + + + + + +

* * * * * * * * * * * * * *

Platform Security Architecture

A complete security offering – openly published. Independently tested.

Threat models & security analyses

Architect

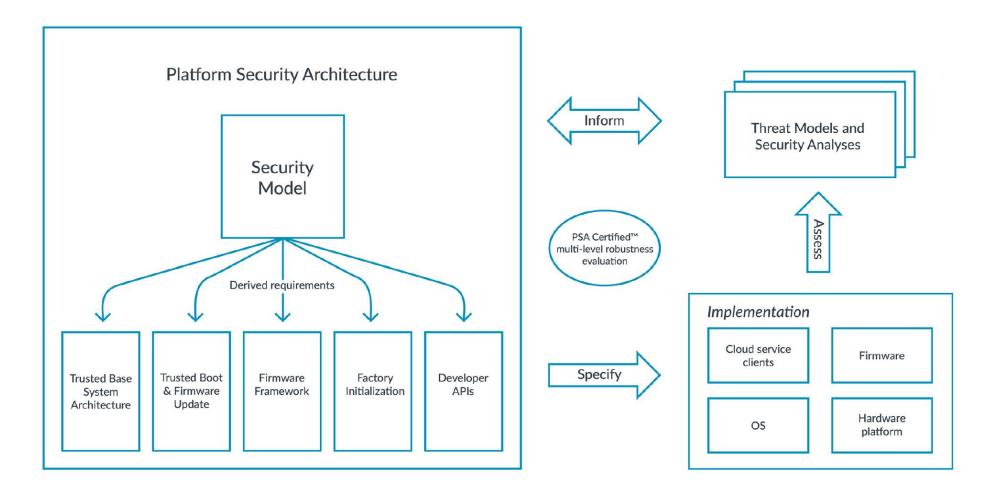
Hardware & firmware architect specifications

01001

Implement

Firmware source code

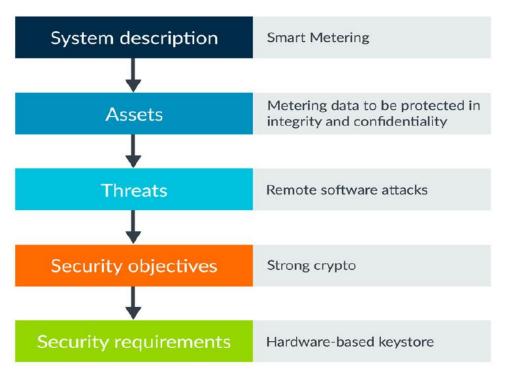
Certify $\overbrace{}$



Platform Security Architecture

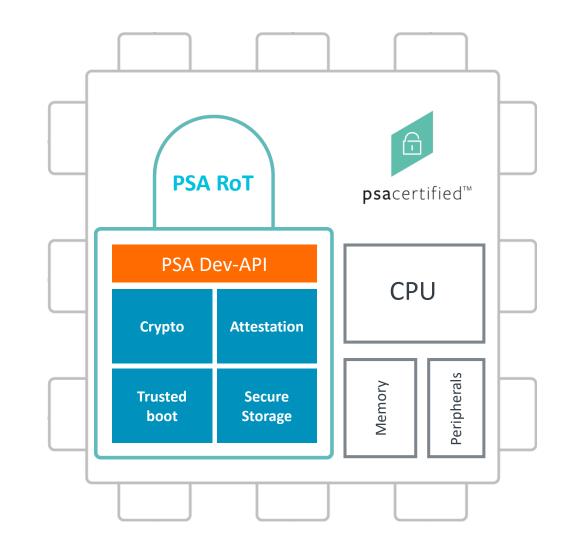
- Analyse with Threat Models and Security Analyses
 - Identify the assets that needs protection
 - All potential threats
 - Scope and Severity of these threats
 - > Different Types of attacker and the methods they might use to exploit vulnerabilities
 - Define security objectives and create security requirements.
- Create a System Architecture that meets security requirements and is according to PSA Architecture specification. Adheres to following specifications:
 - PSA Security Model
 - Factory initialization
 - Hardware platform requirements
 - Firmware Framework
- Implement with Trusted Firmware-M
- Certify with PSA Certified and PSA Functional API Specification

Platform Security Architecture


PSA Components

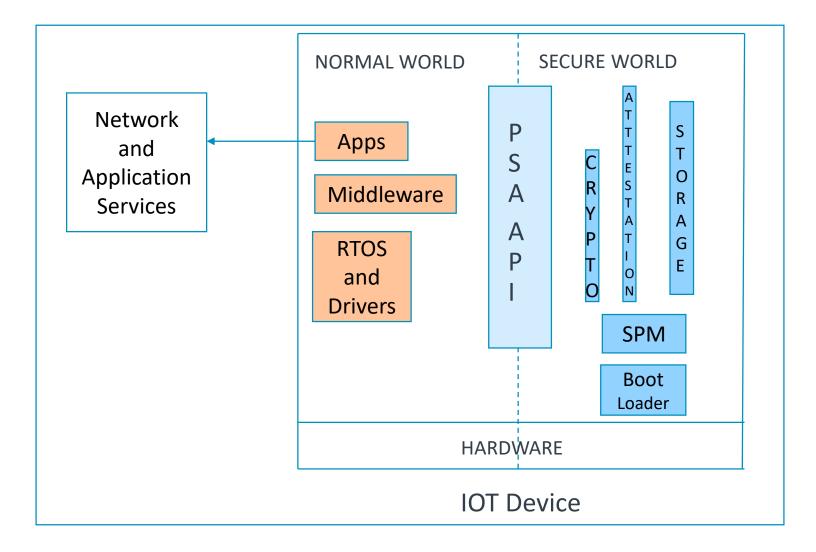
PSA – Example of Analyse

Threat Models and Security Analyses


PSA – Root of Trust

Source of integrity and confidentiality

Separates critical security functions in a Secure Processing Environment (SPE) from rest of system


Typically used for secure boot, storing secrets, crypto, attestation, audit logs...

Developed by chip vendors (for example, by porting Trusted Firmware-M open source software to secure hardware)

PSA Compliant - Software Architecture – IOT Device

PSA Certified – An Overview

Building trust through independent testing

Dedicated to PSA-RoT enabled chips, devices and platforms

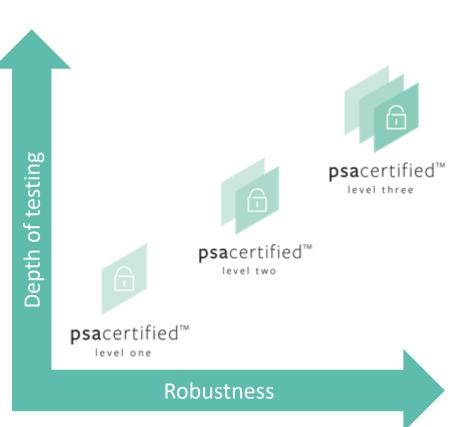
Builds on IoT threat models, PSA docs, Government best practice & protection profiles

Simple three-level scheme

Scalable to IoT ecosystem

Backed by reputable experts

Supporting complementary vertical evaluations



PSA Certification - How it Works

- PSA Certified provides three progressive levels of security assurance/robustness: PSA Certified Level 1, 2 and 3
- PSA Functional API Certified enables ecosystem through a consistent highlevel interface to the PSA-RoT

PSA Certified Levels

PSA Certified Levels

| PSA
Certification
Level | Silicon | OS | OEM |
|-------------------------------|---------|-------------|------------|
| L3
Months | ✓ | Third-party | evaluation |
| L2
1 month | ✓ | sche | emes |
| L1
1 day | ✓ | ~ | ~ |

Three assurance levels

Level 1: Document & Declare with lab check

- Security Model goals, government requirements
- IoT threat models Security Functional Requirements
- Lab check of questionnaire

Level 2: Mid Level assurance/robustness

- Time-limited white box testing
- Protection Profiles, eval methodology and attack methods

Level 3: Substantial

More extensive attacks

e.g. Side Channel, perturbation

• Higher assurance

+ + + + + + + + + + + + + + +

* * * * * * * * * * * * * * *

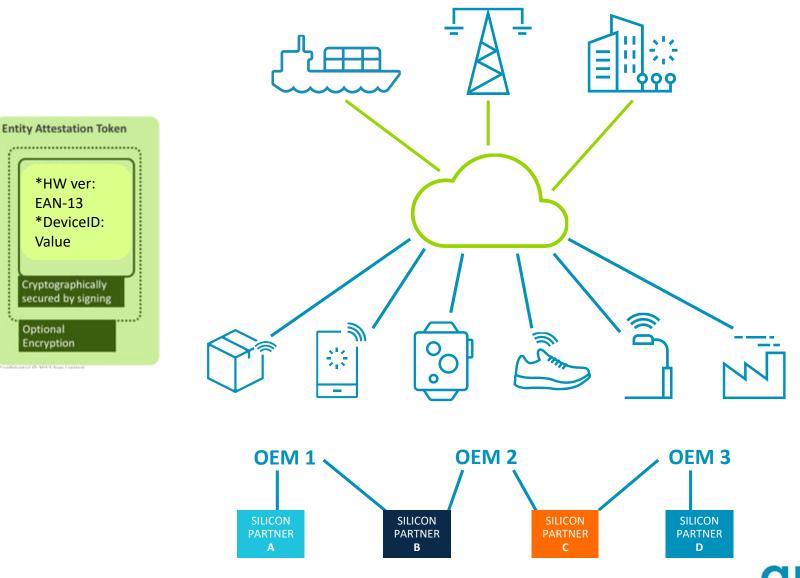
+ + + + + + + + + + + + + + + Building Trust in IoT

* * * * * * * * * * * * * * * * * *

+ + + + + + + + + + + + + + + +

+ + + + + + + + + + + + +

PSA Attestation

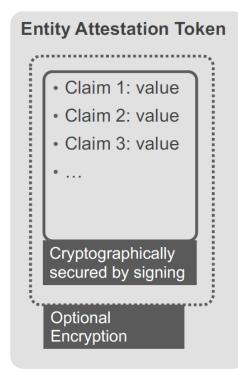

- Attestation Tokens are small reports that are produced by a device upon request. These tokens are collection of "Key/Value" pairs known as **claims**.
- Claims can relate to device own pedigree, or health or pretty much anything one wants the device to attest about.
- Collected data can originate from the Root of Trust, or any protected area (secure element, TrustZone, container), or from non-protected areas, in which case they are clearly marked as such.
- Tokens are attested because they are signed by devices using device specific unique cryptographic key.

PSA Certified Devices Support Attestation Tokens

EAT is a crypto signed "report card" with useful claims

Can be consumed by higher level attestation schemes

"HW Version" claim used as a chip class ID that can be used to look up PSA Certified level on www.psacertified.org



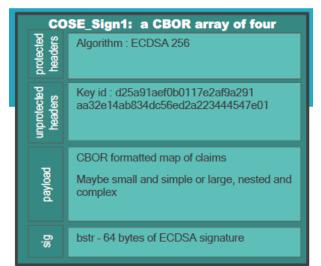
PSA Attestation – Token Encoding

- "Concise Binary Object Representation" (CBOR, <u>http://cbor.io</u>)
- Compact code and data representation for IoT
- Standards based (RFC 7049), quite mature

Handles multiple data types, with open source implementations and tools

Data types are simple & powerful – a claim can be a simple integer or have a complex internal structure; allows for optional data

Four Aspects of Standardization


- 1. General Structuring and Representation of Claims
- Labeling of claims
- Optionality of claims
- Flexible data representation integers, strings, binary...
- 2. Meaning of Individual Claims
- Interoperability between devices and servers from different vendors

3. Signing Format

- Accommodate different schemes and algorithms
- 4. Encryption Format (optional)
- Accommodate different algorithms

PSA Attestation – Token Signing

- CBOR Object Signing and Encryption ("COSE")
- An IoT-oriented format for signing and/or encrypting a payload
- Much simpler and more compact than PKCS #7, CMS and JOSE
- COSE provides structuring of payload, algorithm identification, key identification and signature
- COSE signed tokens are small, self-secured data blobs
- Standard format (RFC 8152) allows use and development of standard / open source tools

PSA Attestation – Utilized Claims

| Claim | Mandatory | Description |
|--------------------------------|-----------|---|
| Auth Challenge | Yes | Input Object from caller. This can be a cryptographic nonce |
| Instance ID | Yes | Unique identifier of the instance. Hash of Public(IAT) Key |
| Implementation ID | Yes | Uniquely identifies the underlying immutable RoT |
| Client Id | Yes | Represents the partition ID of the caller. Signed integer, where
ive ID represent NSPE Call and +ive ID represent SPE call |
| Security LifeCycle | Yes | Represent current life cycle state of the PSA RoT |
| Boot Seed | Yes | Represents the random value created at system boot time |
| Software Components | Yes | A list of Software components that represent all the software loaded by PSA RoT. |
| No Software Measurements | Yes | Mandatory claim, only if SW Components are missing! |
| Verification Service Indicator | No | A hint used by RP, to locate a validation service for the token |
| Profile Definition | No | Name of document that described the profile of the report |
| Hardware Version | No | Provides metadata linking the token to the GDSII that went to fabrication |

CIM PSA Attestation Practical Use Cases

+ + + + + + + + + + + + + +

* * * * * * * * * * * * * * *

+ + + + + + + + + + + + + + + + Building Trust in IoT

* * * * * * * * * * * * * * * * *

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + + +

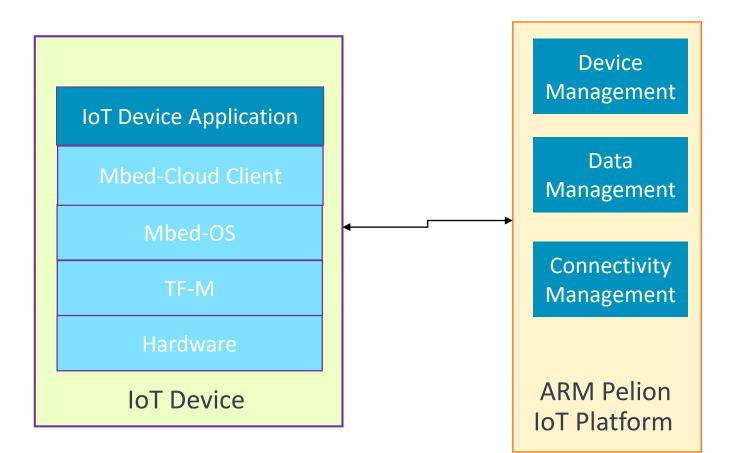
How IoT world can benefit from PSA Attestation

| Smart Home/City Example Smart
Door
locks/sensors Smart Lighting | Industrial IOT Attest signals
monitoring state
or measurement
of each
equipment Fleet
Management Asset tracking | Connected
Health Care
• Attest Distress
Signals
• Catching
Counterfeits
during medical
surgeries | Others Military & Défense Miscellaneous |
|---|--|---|--|
| | PSA At | testation | |

Orm ARM view of reference IoT Implementation

+ + + + + + + + + + + + + + +

+ + + + + + + + + + + + +


+ + + + + + + + + + + + + + Building Trust in IoT

* * * * * * * * * * * * * * * *

+ + + + + + + + + + + + + +

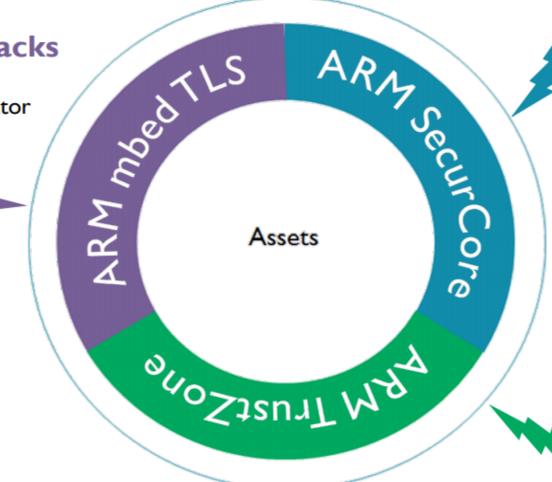
+ + + + + + + + + + + + + + +

PSA Compliant – ARM reference IoT platform

drm Trusted Firmware

* * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * *


* * * * * * * * * * * * * * *

+ + + + + + + + + + + + +

Attack types

Communication Attacks

- Man in the middle
- Weak random number generator
- Code vulnerabilities
- Transport layer security (TLS)

Physical Attacks

- Fault injection: clock or power glitch, alpha ray
- Side channel analysis
- Probing, focused ion beam

Software Attacks

- Buffer overflows
- Interrupts
- Malware

Target: Security for all embedded applications

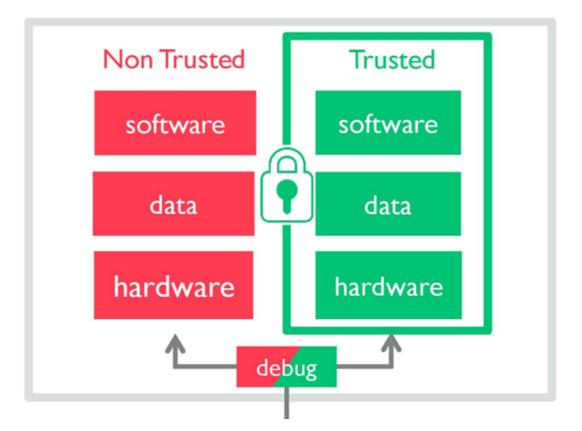
Root of trust applications - IoT **IP** Protection Valuable firmware Trusted software **Trusted hardware Trusted drivers** Secure Trusted hardware Secure Crypto TRNG* system storage Sandboxing Certified OS / functionality **Trusted drivers** Trusted Untrusted Trusted hardware Developer Ecosystem Standard, friendly affordable friendly

Trusted Firmware - <u>https://www.trustedfirmware.org/</u>

• Why choose Trusted Firmware?

- Trusted Firmware provides a reference implementation of secure world software for Armv8-A and Armv8-M. It provides SoC developers and OEMs with a reference trusted code base complying with the relevant Arm specifications.
- This firms the foundations of a Trusted Execution Environment (TEE) on application processors, or the Secure Processing Environment (SPE) of microcontrollers.

Availability of Trusted Firmware

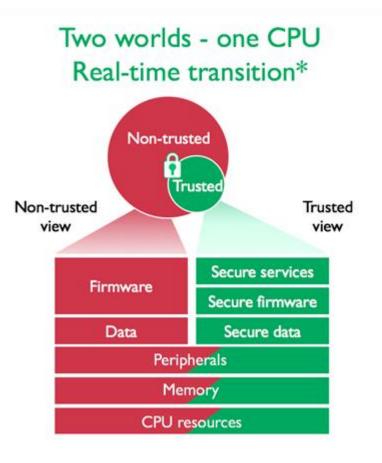

- Support for Armv8-A / Trusted Firmware-A (TF-A)
- Support for Armv8-M / Trusted Firmware-M (TF-M) and relationship with Platform Security Architecture (PSA)
 - PSA provides a common security foundation for the whole IoT ecosystem. It includes many elements, including architecture specifications and threat models. An
 important part of PSA is open source firmware. *This is available in the form of Trusted Firmware-M* for Arm Cortex-M23 and Arm Cortex-M33 processors, which use Arm
 TrustZone technology.

Trusted Firmware-M

- Secure Firmware for Arm v7-M and v8-M Systems
- Provides a Trusted Execution Environment (TEE) for Arm v7-M and v8-M devices. For v8-M devices, it leverages, Arm TrustZone technology. It is the reference implementation
 of Platform Security Architecture (PSA). PSA is a recipe for building secure connected devices from analysis to implementation. PSA consists of four elements Threat models
 and Security Analyses, Architecture Specifications, Open Source Reference Implementation (TF-M) and Certify.
- TF-M implements PSA Specifications and APIs that can be found here.
 - https://developer.arm.com/architectures/security-architectures/platform-security-architecture

TrustZone: IoT Security Foundation

Isolates trusted software, data and hardware

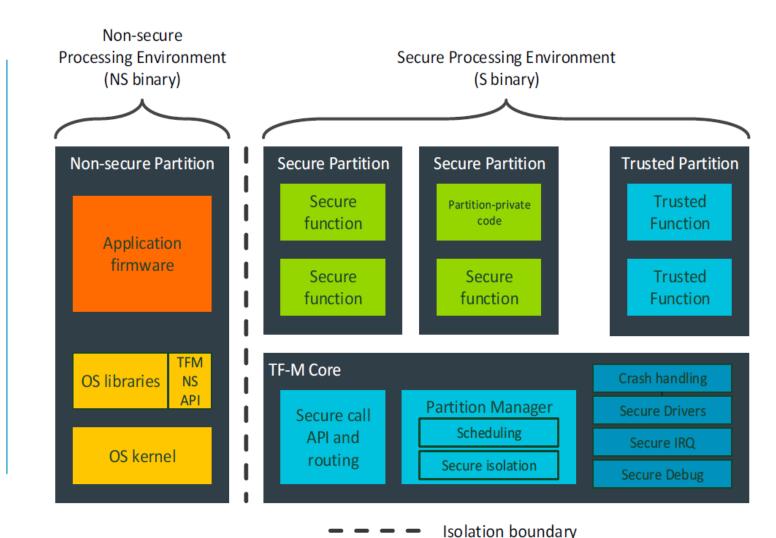


Enables device integrity and system recovery

- Example use cases:
 - Protection of critical assets
 - Safe crypto implementations
 - Secure remote firmware update
 - Firmware IP protection
 - Secure debug

TrustZone Technology for Armv8-M

- The Armv8-M architecture extends TrustZone technology to Cortex-M based systems,
- TrustZone reduces the potential for attack by isolating the critical security firmware and private information, such as secure boot, firmware update, and keys, from the rest of the application.
- TrustZone technology offers an efficient, system-wide approach to security with *hardware-enforced isolation* built into the CPU
- Running two domains side-by-side and sharing resources per set configuration.



*≤2 cycles

TF-M Framework

- Secure bootloader
- Secure system init
- Secure Partition Management (SPM)
- Secure function call routing
- Isolation within SPE
- Trusted services, functions
- NSPE API
- Build environment
- Test suite

• ...

arm

Introduction to TrustZone for Armv8-M

Armv8-M architecture includes optional Security Extension

Branded as Arm TrustZone for Armv8-M

Similar in concept to TrustZone for Armv8-A

• Implementation is optimized for microcontrollers

System may be partitioned between secure and non-secure software

Secure software is highly trusted

- Has access to more system resources
- Protected from access by non-trusted code

To protect the secure software the security extensions provide:

- Isolated Secure memory for code and data
- Secure execution state to run Secure code

ARMv8-M Security Extension

Provides two security domains for code to run in

- Secure and Non-secure
- PEs without the Security Extension behave as though reset into Non-secure

Hardware assists in hiding Secure state from Non-secure code / debuggers

- Debugger can be blocked from accessing PE while Secure code is running
- Hardware pushes and clears registers if non-secure code interrupts secure code
- Stack limit registers added to assist in attack mitigation

Duplicate resources to enable software and hardware isolation

- For example, dedicated stack pointers, SysTick timers and MPUs for each domain
- Non-secure code only able to access non-secure controls

Ability to expose PE's security to system

• ARM's AXI and AMBA5 AHB5 support propagation of NS attribute

+ + + + + + + + + + + + + + +

| | | | | | | | | | | | Building Trust in IoT | |
|--|--|--|--|--|--|--|--|--|--|--|-----------------------|--|
|--|--|--|--|--|--|--|--|--|--|--|-----------------------|--|

* * * * * * * * * * * * * * *

* * * * * * * * * * * * * * *

Mbed-OS

- Arm Mbed OS is a free, open source embedded operating system that includes all the necessary features to facilitate the development of IOT Connected Products.
- Mbed OS provides an abstraction layer for the microcontroller it runs on
- Mbed OS modules include
 - Standard (PSA Compliant) based security and connectivity stacks
 - RTOS Kernel
 - Middleware for storage and Networking
 - Drivers for sensors and I/O Devices
 - Remote Device Management

Mbed OS Features

- > Modular, Necessary libraries are included automatically on your device
- Secure: MultiLayer security helps to protect your IoT solution, from isolated security domains through to Mbed TLS for secure communications
- > Connected: Wide range of communication options with drivers for BLE, Ethernet, WiFi, 6LoWPAN

MBED OS Architecture

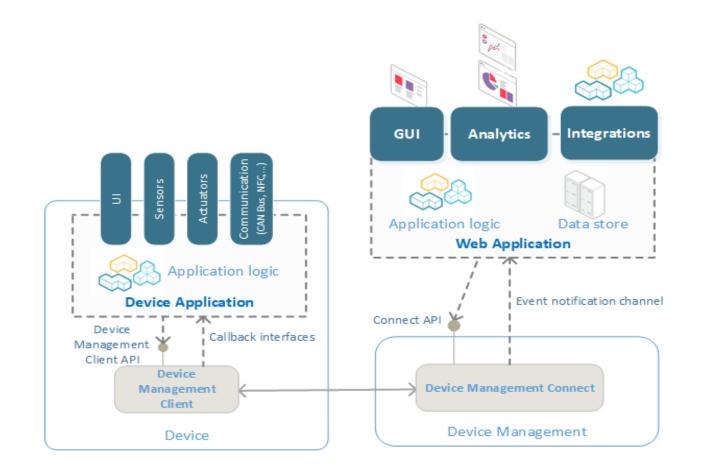
| | Ar | oplication C | ode | | | Mbe | d OS | Libraries | | | | Pelion Client | | ÷ |
|-------------|---|---------------|-------------|--------------------|--------------|-------------|--------------|----------------------|------------|--------------------------|--------------------|-------------------|------------------------|---------------------|
| | | | | | | N | /lbed | OS API | | | | | | |
| | Mbed OS
Core | | | Mbed OS
Runtime | | | Mbe | d TLS | | | ed OS
nectivity | | | S non-IP
ctivity |
| Stre
FAT | eam / file inte | erface | Drivers | Mbed
Events | Mbed
RTOS | X.50 | 09 | SSL
TLS/DTLS | | Network Socket Interface | | | | LoRaWAN |
| - | storage | NVStore | Drivers HAL | CMSIS
RTOS | RNG
LIB | PK
Cryp | Hashing | | LWIP Stack | Nanostack | BLE | LoRaWAN
Stack | | |
| - | untime / boc | otloader | MCU
SDK | CMSI | S RTX | TRNG
CTL | | Cypher | Ethernet | WiFi | Cellular | Thread
6LoWPAN | BLE Stack
or Cordio | LoRa |
| GCC | ARM | IAR | CMSIS | Core | Timers | TRNG
HAL | | N Crypto
unctions | Eth
MAC | WiFi
EMAC | РРР | 802.15.
4 MAC | BLE HCI | LoRa
Radio Drv |
| + | + | + - | + + | + | + | Hard | lware | Interfaces | + | + | + | + | | + + |
| ARM (| Cortex-M CPl | J & Core Peri | pherals | nerals | TRN | G | HW
crypto | | РНҮ | | | Radio | | |
| + | Mbed OS partners and Pe
community co | | | | | | | Partn
componen | | Mbed
compor | | | | |

drm Mbed Cloud Client

+ + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + + Building Trust in IoT

* * * * * * * * * * * * * * * * *


* * * * * * * * * * * * * * *

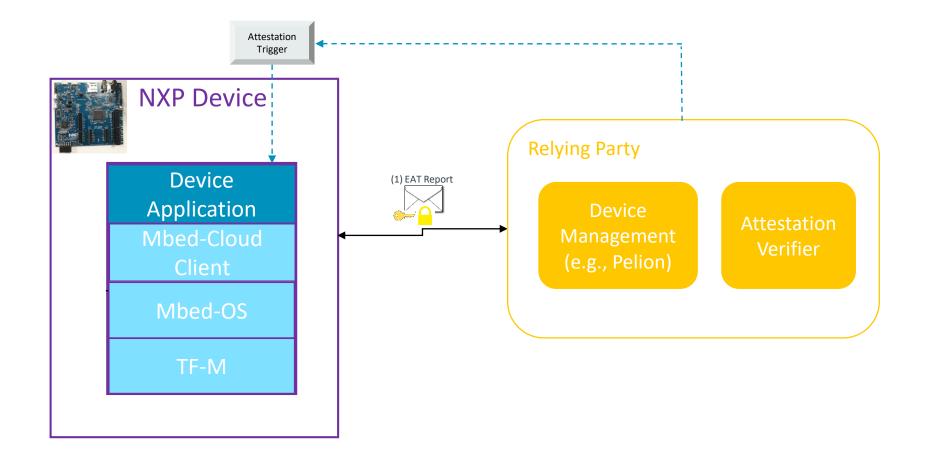
+ + + + + + + + + + + + + + + +

Mbed Cloud Client

- Mbed Cloud Client, (Device management client):
 - Connection Client
 - > Update client
 - Provision client
- Mbed Cloud connect service is a secure and energy efficient communication service connecting devices to Device Management.
- Standards-based protocols (OMA LwM2M, CoAP, and TLS/DTLS), designed specifically for low-power devices.

Device Management Connect

Device Management Connect system diagram


- Device Management uses LWM2M
- Communication using CoAP
- Web application connectivity to the Device Management
- End to End Channel Security

DTLS/TLS: for the connection between the device and the server.

HTTPS: for the connection between web applications and the Device Management REST APIs.

Optimizations for IoT devices.

Attestation Token Validation – Sample Exercise

arm

| Thảnk Yỏu | | | | | | n [*] | rn | C | |
|-----------|----|--|--|--|--|-----------------------|----|---|--|
| Danke | | | | | | | | | |
| Merci | | | | | | | | | |
| 谢谢 | | | | | | | | | |
| ありがとう | | | | | | | | | |
| | | | | | | | | | |
| Gracias | | | | | | | | | |
| Kiitos | | | | | | | | | |
| 남사합니다
 | +7 | | | | | | | | |
| | L | | | | | | | | |
| धन्यवाद | | | | | | | | | |

٩٣٩٩١٩ شكرًا

+ + + + + + + + + + +

ধন্যবাদ

תודה

| _ | | L . | L . | L | | | L | L _ | |
|---|--|-----|-----|---|--|--|---|-----|--|
| | | | | | | | | | |
| | | | | | | | | | |

| trademarks of the US and | emarks featured in this presentation are registered
or trademarks of Arm Limited (or its subsidiaries) in
/or elsewhere. All rights reserved. All other marks
red may be trademarks of their respective owners. |
|--------------------------|--|
|--------------------------|--|

www.arm.com/company/policies/trademarks