
PSA APIs
An overview

Attestation API

• 1.0.1 – we are in the process of dropping a new release which allows signing using symmetric
attestation keys (using COSE Mac0)

• Fully documented in ARM IHI 0085

• TF-M master is slightly behind the spec (1.0.0) – 1.0.1 is currently
sitting in a dev branch

• Consists of one very simple interface:

Attestation API

• If the call returns PSA_SUCCESS, then token_buf contains the Initial
Attestation Token (IAT) as a COSE Sign1 (or maybe Mac0) blob of
*token_size bytes.

• Its payload is -- like EAT -- a collection of claims

• All signed by a special private key (IAK), which is part of the RoT
stashed securely in a protected location (e.g., eFuse)

• The claims can be split into 4/5 distinct categories:
• Caller related, target identification, target state, SW inventory and verifier.

Attestation Claims (caller)

Attestation Claims (target identification)

Attestation Claims (target state)

…

Attestation Claims (target state)

…

Attestation Claims (target SW inventory)

…

Attestation Claims (verifier)

…

Attestation API (usage examples)

• Device enrollment
• CA agent:

• Send nonce;
• Device:

• Create key-pair;
• Create proof-of-possession (e.g., CSR);
• Hash CSR and nonce and use it as the challenge to create an IAT;
• Send CSR and IAT to the CA agent;

• CA agent:
• Verify IAT, CSR and their binding;
• If everything is OK, create certificate and send it back to Device.

• Dynamic / derived claims (e.g., certification)

• Integrity reporting / efficient upgrade campaign

• … add your own!

Crypto API

• 1.0.0 beta 3 -- never been closer!

• Fully documented in ARM IHI 0086

• Scalable implementation via profiling

• Mem constrained: streaming interface (multipart processing)

• Key material is opaque to the caller (it’s always used through handles)
• Typically -- unless policy explicitly allows -- cannot be extracted

• Interface to crypto accelerators not currently spec’d (draft)

Crypto API

• No strong policy stance: not an opinionated API

• Granular interface: callers must precisely identify their algorithm
choice, key sizes, parameters
• Risk of shooting yourself in the foot

• Trade-off w/ support for legacy protocols

• Responsibility shifted to the API implementor

• Allow multiple architectural realisations (from linked library a la
mbedTLS, to frontend-backend with crypto accelerator / SE, to
PARSEC-like architectures, i.e. 1 backend and multiple frontends)

Crypto API (use cases)

• TLS

• Secure storage

• Network credentials

• Device pairing

• Secure boot (FW integrity and authenticity)

• Factory provisioning

Storage API

• 1.0.0

• Fully documented in ARM IHI 0087

• K-V storage interface to be used with device-protected storage

• Each unit of storage is name spaced, which means one partition can
never access data of another partition

• Simple get/set/remove API

• Reference implementation in TF-M

Storage API

Two different interfaces are described:

• Internal trusted storage, implemented by the PSA RoT
• Small(-ish) objects, on-chip flash
• Secure storage for device’s “intimate” data, e.g.:

• Identity keys (privacy protection)
• FW verification keys (integrity protection)
• FW rollback counters (integrity protection)

• Protected storage, implemented by the ARoT or even NSPE if there
are no ARoT services
• Larger objects, hosted on externally to the MCU package, typically on external

flash
• Protection of data at rest

Storage API (example)

PSA API recap

• They are public, they are well documented (we think), they are implemented
(although at different stages of maturity, but we are quickly converging)

• Please use them and tell us what you think!

