TEEP @ Hackathon

Hannes Tschofenig

(hannes.Tschofenig@arm.com)

Agenda

 What is TEEP?
* History: TEEP protocol vs. OTrP
* Architecture

e Goals and project ideas
* TrustZone Integration

TEEP - Trusted Execution Environment Provisioning

A software isolation technology

TEEP M. Pei
Internet-Draft Symantec
Intended status: Informational H. Tschofenig
Expires: August 11, 2020 Arm Limited
D. Thaler

Microsoft

D. Wheeler

Intel
February ©8, 2020

Trusted Execution Environment Provisioning (TEEP) Architecture
draft-ietf-teep-architecture-06

https://tools.ietf.org/html/draft-ietf-teep-architecture-06

The Trusted Execution
Environment (TEE) concept is
designed to execute applications
in a protected environment that
enforces that only authorized
code can execute within that
environment, and that any data
used by such code cannot be read
or tampered with by any code

outside that environment,

including by a commodity
operating system (if present).

Architecture

e e

The TEEP protocol

installs, updates, and deletes
Trusted Applications (TAs) in a

TA Developer
Device Administrator

+-------+
[<=mmmmmoo| App-2 |-

| TA2|

+--—t -t
|
| +---+ +---+ |

Device

device with a TEE.

TEEP Protocol vs. Open Trust Protocol (OTrP)

e OTrP was the proposed protocol solution submitted to the TEEP working
group based on prior work done outside the IETF.
* Expired draft here: https://tools.ietf.org/html/draft-ietf-teep-opentrustprotocol-03
* Open source implementation exists: https://github.com/dthaler/OTrP

* TEEP working group generalized the protocol to focus on additional use
cases, more TEEs, re-use ongoing IETF work and simplified the design.

* The result is the TEEP protocol replacing the OTrP protocol:
https://tools.ietf.org/html/draft-ietf-teep-protocol-00

* Transport specified:
https://tools.ietf.org/html/draft-ietf-teep-otrp-over-http-04

TEEP Protocol vs. Open Trust Protocol (OTrP)

TEEP Protocol OTrP

* Uses CBOR and JSON encoding * Uses JSON and JOSE
(with COSE and JOSE,
respectively)

* Attestation based on RATS
* TA management based on SUIT

* Attestation custom to OTrP
* TA management custom to OTrP

* Dropped key exchange for

personalization data protection
* Security Domain management

removed from base protocol

TEEP Protocol

TAM TEEP Agent
Trigger (Empty Msg)

QueryR&q uest

— Response || Error

£
<

TrustedApplnstall \

(Success | | Error

TrustedAppDelete —_—
— Success || Error

A
<

Goals

 Verify TEEP protocol specification (readability, clarity, completeness)
» Add text for JSON/JSON spec to TEEP protocol specification
(It is there via CDDL but more is needed to fully describe it.)
* Add examples (for both encodings)
e Learn from the integration into TrustZone and SGX.

Projects

TEEP Broker /

TEEP Agent

e Can we create a prototype implementation?
* Client-side and server-side -- in 2 days? JSON/JOSE-based encoding — for example
* Can we use different languages (Java/Python on TAM-side, and C on the client-side)
* Can we re-purpose existing OTrP code (e.g., Dave’s code) for TEEP?
* Can we do some interop testing afterwards?

* Are we able to integrate SUIT and/or RATS?

Projects, cont.

TEEP Agent TEEP Broker

(TEE) (REE)

* Could we even get the integration into TrustZone done?

* Note that there are two “types” of TrustZone:
1. TrustZone for v8-M
2. TrustZone for A-class

TrustZone

Arm v8-A

NON-SECURE STATES SECURE STATES

Rich OS,
e.g. Linux

J)S

Secure Monitor

Arm v8-M

NON-SECURE STATES SECURE STATES

Crypto
App ﬁ yp

Attestation
Secure

Storage

Secure
Boot

Secure transitions handled by the processor
to meet embedded system latency requirements

Cross-Domain Function Calls

Non-secure memory Secure memory (Non-secure callable)

NonSecureFunc: SecurefFunc:
BL SecureFunc DT —> sG
<Non-secure code>4—‘
<Secure code>
BZERIEE- Bxns 1r

* Guard instruction (SG) polices entry point
* Placed at the start of function callable from non-secure code.

* Non-secure = secure branch faults if SG isn’t at target address
e Can’t branch into the middle of functions
e Can’t call internal functions.

* Code on Non-secure side identical to existing code.

ARMv8-M Sub-profiles

= Arm v8-M Baseline
* Lowest cost, and smallest implementations
* Example: Cortex M23

= Arm v8-M Mainline

* For general purpose microcontroller
products

Arm v7-M * Optional DSP, floating-point and ML
extensions.

* Examples: Cortex M33, Cortex M55 (Helium
extensions)

Mainline

Baseline

= Variants with physical security

v

properties available as well

In deployment
ploy Arm v8-M * Example: Cortex M35P

today

Possible Software Architecture

REE

TEE

User application

System start
(Secure Boot)

m TEEP Agent
I I

rece Broker < Function calls

OS & Middleware

5

* Non-secure project
cannot access Secure
resources.

* Secure project can
access everything.

» Secure side contains
other security-relevant
code besides TEEP,
such as secure boot,
attestation, crypto,
secure storage, etc.

TrustZone for A-class «GP specs:

e https://globalplatform.org/specs-library/
Rich OS application environment Trusted execution environment

* Reference implementation for
N () (@) |Feicnt Nenaitl NS :
D|RM autlhenticution integrity Mgmt mon |t0 r CO d e: A 'm Tr U Ste d

© Firmware for A class (TF-A)

GlobalPlatform TEE client API GlobalPlatform TEE internal APIs * https ://WWW'trUStedfl rmwa re.org/
Trusted OS components * https://git.trustedfirmware.org/TF-A/

TEE Trusted Trusted

comm. core drivers

o cgen famawor * Reference implementation for
Trusted OS: OP-TEE
HW Keys, Secure storage, Trusted Ul (Keypad screen),

* https://github.com/OP-TEE/
Hordware platform HW secure resources * https://optee.readthedocs.io/en/latest/

e https://github.com/linaro-
swg/optee examples

Arm trusted firmware

Communication

Rich environment Trusted environment

Trusted Application

Client Application #

Shared Memory -w

A

Y

TEE Client API

A
TEE

Communications
stack

b

A

b Messages

Platform (Hardware / Hypervisor)

Figure 2-1: TEE Client APl System Architecture

Reference: TEE Client AP| Specification - Version 1.0

o Uk wh e

TEEC InitializeContext(ctx)
TEEC_OpenSession(ctx,session, UUID,...)
// create command structure
TEEC_InvokeCommand(session, cmd, ..)
TEEC_CloseSession(session)
TEEC_FinalizeContext(ctx)

Communication, cont.

Trusted environment

@ o roviction TA CreateEntryPoint (..):
e * Called when the TA is created.

TA_DestroyEntryPoint(..)
e Called when the TA is destroyed.

TA_OpenSessionEntryPoint(..):
* Global initialization of the TA.

: TA CloseSessionEntryPoint(..):
* Called when the TA session is closed.

TA InvokeCommandEntryPoint (..): Calls
functions based on the commands issued.

Rich environment

Client Application

Shared Memory -w

>
[]

A

Y

TEE Client API

A
TEE

Communications
stack

b

b Messages <

Platform (Hardware / Hypervisor)

Figure 2-1: TEE Client APl System Architecture

Reference: TEE Client AP| Specification - Version 1.0

Communication
Passing short values

REE App TA

uint32_t exp_param_types = TEE_PARAM_TYPES(TEE_PARAM_TYPE_VALUE_INOUT,
TEE_PARAM_TYPE_NONE,
op.paramTypes = TEEC_PARAM TYPES(TEEC_VALUE_INOUT, TEEC_NONE, TEE_PARAM_TYPE_NONE,
TEEC_NONE, TEEC_NONE); TEE_PARAM_TYPE_NONE) ;

op.params[@].value.a = 42;
if (param_types != exp_param_types)

return TEE_ERROR_BAD_PARAMETERS;

params[@].value.a++;

Communication
Shared Memory

REE App TA

/* 1. Register the shared key */ uint32_t exp_param_types = TEE_PARAM TYPES(TEE_PARAM_TYPE_MEMREF_INPUT,
op.paramTypes = TEEC_PARAM_TYPES(TEEC_MEMREF_TEMP_INPUT, TEE_PARAM_TYPE_NONE,
TEEC_NONE, TEEC_NONE, TEEC_NONE); TEE_PARAM_TYPE_NONE,
op.params[@].tmpref.buffer = K; TEE_PARAM_TYPE NONE);

If(...)..
memset(K, @, sizeof(K));

memcpy (K, params[@].memref.buffer, params[@].memref.size);

op.params[@].tmpref.size = sizeof(K);

fprintf(stdout, "Register the shared key: %s\n", K);
res = TEEC_InvokeCommand(&sess, TA_HOTP_CMD_REGISTER_SHARED_KEY,

K_len = params[@].memref.size;
&op, &err_origin); "

Updating Code

> Loads
——3(Loads &) Calls

E ---.}tLuaﬂs &) Calls options
g - Configured via STM32CubeMX
Community + ST adds-on . : Authentication {optional)

3rd Party

Legend

Linux user
space

Linux kernel

Second Stage
Boot Loader
(SSBL)

First Stage
Boot Loader
(FSBL)

ROM Code

Lkys

life. ougmentec

Figure copied from STM32MP1 documentation.

A Trusted boot chain

Cortex-A7 Secure (TZ)

Cortex-A7 Non-Secure

SYSR&M (256:I(B}

DDR (upto 1GB)

Runtime services

Secure Monitor

i

TF-Aror 8
OP-TEE

ucuzm (384kB) -
Retention RAM (64kB)

Applications

optional

Coprocessor

Note - a Basic boot chain is also available, fully relying on U-Boot (instead of TF-A + U-Boot)

summary

* For a TrustZone-based device, TEEP offers a protocol for managing the
lifecycle of TAs (or code in general).
e TEEP uses RATS and SUIT

* A non-TrustZone-based system may use TEEP for parameter
negotiation
* It may or may not use RATS in that case.

* RATS may be building block in a number of protocols where
attestation functionality is desired.

