
TEEP @ Hackathon
Hannes Tschofenig

(hannes.Tschofenig@arm.com)

Agenda

• What is TEEP?
• History: TEEP protocol vs. OTrP
• Architecture

• Goals and project ideas
• TrustZone Integration

TEEP - Trusted Execution Environment Provisioning
A software isolation technology

https://tools.ietf.org/html/draft-ietf-teep-architecture-06

The Trusted Execution
Environment (TEE) concept is
designed to execute applications
in a protected environment that
enforces that only authorized
code can execute within that
environment, and that any data
used by such code cannot be read
or tampered with by any code
outside that environment,
including by a commodity
operating system (if present).

Architecture

The TEEP protocol
installs, updates, and deletes

Trusted Applications (TAs) in a
device with a TEE.

TEEP Protocol vs. Open Trust Protocol (OTrP)

• OTrP was the proposed protocol solution submitted to the TEEP working
group based on prior work done outside the IETF.

• Expired draft here: https://tools.ietf.org/html/draft-ietf-teep-opentrustprotocol-03
• Open source implementation exists: https://github.com/dthaler/OTrP

• TEEP working group generalized the protocol to focus on additional use
cases, more TEEs, re-use ongoing IETF work and simplified the design.

• The result is the TEEP protocol replacing the OTrP protocol:
https://tools.ietf.org/html/draft-ietf-teep-protocol-00

• Transport specified:
https://tools.ietf.org/html/draft-ietf-teep-otrp-over-http-04

TEEP Protocol vs. Open Trust Protocol (OTrP)

TEEP Protocol
• Uses CBOR and JSON encoding

(with COSE and JOSE,
respectively)

• Attestation based on RATS
• TA management based on SUIT
• Security Domain management

removed from base protocol

OTrP
• Uses JSON and JOSE
• Attestation custom to OTrP
• TA management custom to OTrP
• Dropped key exchange for

personalization data protection

TEEP Protocol
TAM

QueryRequest

TrustedAppInstall

TrustedAppDelete

TEEP Agent

Response || Error

Success || Error

Success || Error

Trigger (Empty Msg)

Goals

• Verify TEEP protocol specification (readability, clarity, completeness)
• Add text for JSON/JSON spec to TEEP protocol specification

(It is there via CDDL but more is needed to fully describe it.)
• Add examples (for both encodings)
• Learn from the integration into TrustZone and SGX.

Projects

• Can we create a prototype implementation?
• Client-side and server-side -- in 2 days? JSON/JOSE-based encoding – for example
• Can we use different languages (Java/Python on TAM-side, and C on the client-side)
• Can we re-purpose existing OTrP code (e.g., Dave’s code) for TEEP?
• Can we do some interop testing afterwards?

• Are we able to integrate SUIT and/or RATS?

TEEP Broker /
TEEP Agent TAM

Projects, cont.

• Could we even get the integration into TrustZone done?
• Note that there are two “types” of TrustZone:

1. TrustZone for v8-M
2. TrustZone for A-class

TEEP Agent
(TEE) TAM

TEEP Broker
(REE)

TrustZone
Arm v8-A Arm v8-M

SECURE STATESNON-SECURE STATES SECURE STATESNON-SECURE STATES

Secure transitions handled by the processor
to meet embedded system latency requirements

Crypto
Attestation

Secure
Storage

Secure
Boot

OS

App
Trusted

Apps

Secure OS

Rich OS,
e.g. Linux

Secure Monitor

Cross-Domain Function Calls

• Guard instruction (SG) polices entry point
• Placed at the start of function callable from non-secure code.

• Non-secure  secure branch faults if SG isn’t at target address
• Can’t branch into the middle of functions
• Can’t call internal functions.

• Code on Non-secure side identical to existing code.

Secure memory (Non-secure callable)

NonSecureFunc:
BL SecureFunc

<Non-secure code>

SecureFunc:
SG

<Secure code>
BXNS lr

Non-secure memory

Enter Secure state

Call

Return to NS

ARMv8-M Sub-profiles

 Arm v8-M Baseline
• Lowest cost, and smallest implementations
• Example: Cortex M23

 Arm v8-M Mainline
• For general purpose microcontroller

products
• Optional DSP, floating-point and ML

extensions.
• Examples: Cortex M33, Cortex M55 (Helium

extensions)

 Variants with physical security
properties available as well
• Example: Cortex M35P

Arm v6-M

Arm v7-M

Baseline

Mainline

Arm v8-MIn deployment
today

Possible Software Architecture

• Non-secure project
cannot access Secure
resources.

• Secure project can
access everything.

• Secure side contains
other security-relevant
code besides TEEP,
such as secure boot,
attestation, crypto,
secure storage, etc.

REE TEE

System start
(Secure Boot)

TEEP Agent

Crypto

User application

TEEP Broker

Start

Function calls

Function calls

Ca
ll

Ca
llCall

OS & Middleware

Call

TrustZone for A-class • GP specs:
• https://globalplatform.org/specs-library/

• Reference implementation for
monitor code: Arm Trusted
Firmware for A class (TF-A)

• https://www.trustedfirmware.org/
• https://git.trustedfirmware.org/TF-A/

• Reference implementation for
Trusted OS: OP-TEE

• https://github.com/OP-TEE/
• https://optee.readthedocs.io/en/latest/
• https://github.com/linaro-

swg/optee_examples

Communication

1. TEEC_InitializeContext(ctx)
2. TEEC_OpenSession(ctx,session, UUID,…)
3. // create command structure
4. TEEC_InvokeCommand(session, cmd, ..)
5. TEEC_CloseSession(session)
6. TEEC_FinalizeContext(ctx)

Reference: TEE Client API Specification - Version 1.0

Communication, cont.

• TA_CreateEntryPoint (..):
• Called when the TA is created.

• TA_DestroyEntryPoint(..)
• Called when the TA is destroyed.

• TA_OpenSessionEntryPoint(..):
• Global initialization of the TA.

• TA_CloseSessionEntryPoint(..):
• Called when the TA session is closed.

• TA_InvokeCommandEntryPoint (..): Calls
functions based on the commands issued.

Reference: TEE Client API Specification - Version 1.0

Communication
Passing short values

REE App TA

Communication
Shared Memory

REE App TA

If (…) …

Updating Code

Figure copied from STM32MP1 documentation.

Summary

• For a TrustZone-based device, TEEP offers a protocol for managing the
lifecycle of TAs (or code in general).

• TEEP uses RATS and SUIT

• A non-TrustZone-based system may use TEEP for parameter
negotiation

• It may or may not use RATS in that case.

• RATS may be building block in a number of protocols where
attestation functionality is desired.

